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Abstract

Pokémon battling is a complex game that can be used
to benchmark an agents ability to deal with complex sit-
uations. Pokémon provides many challenges that will be
essential to overcome for generalized AI systems includ-
ing hidden information and implicit long term planning.
Currently to our knowledge, the only language based sys-
tem to play Pokémon battles [15] uses prompting methods
to improve performance, such as In-context learning and
self-consistency [23]. These methods can only improve an
agents ability so far without being able to instill knowl-
edge about the specific domain into the network. We pro-
pose PokéLLMon Trainer, a method for model distillation
on Pokémon battles. Our solution improves small agent’s
ability to select valid moves and gives a slight improvement
on performance against human opponents.

1. Introduction
As Artificial Intelligence (AI) agents become more ad-

vanced, finding ways to benchmark their capabilities on
complex tasks compared to humans is important to measur-
ing progress of the field. We use Pokémon battles as an en-
vironment for such a benchmark. Pokémon battles present
significant challenges for AI agents, including the need
to navigate hidden information, requiring domain-specific
knowledge, and the formulation of long-term strategies.

PokéLLMon [15] introduced the first Large Language
Model (LLM) agent capable of near human parity perfor-
mance using GPT-4 [18] and multiple methods to deal with
the aformentioned difficulties. However, these methods
can only improve performance so far without fine-tuning a
model. Without such fine-tuning the agent has limited capa-
bility to reason about future turns and can still suffer from
LLM hallucinations. Their methods also create computa-
tional inefficiencies due to repeating large portions of their
prompt at each time step.

We propose model distillation as a first step towards
training a LLM agent to outperform humans in Pokémon
battles. Our method uses a 7-billion parameter Llama model

[21] to collect game data, which is then used to distill a 1.1-
billion parameter model Tiny-Llama [24]. Our method has
the following contributions:

• We provide a way for the agent to gain knowledge
about the environment dynamics purely through exam-
ples. This gives our agent the ability to surpass the
teacher model.

• We increase the efficiency of inference by removing
roughly 10% of each turn’s prompt.

• We greatly improve the student model’s ability to se-
lect valid moves.

2. Background
2.1. Pokémon Battles

Species: As of the writing of this paper there are cur-
rently 1025 species of Pokémon [7], each with a unique
combination of typing, stats, abilities, and move pools.

Stats: Stats are several parameters relating to an indi-
vidual Pokémon that can affect turn order, move success,
and damage output during a battle. There are six main stats:
Hit Points (HP): determines how much damage a Pokémon
can take before it faints; Attack (Atk): partly determines
how much damage a Pokémon deals when using a physical
move; Defense (Def): partly determines how much damage
a Pokémon takes when being hit by a physical move; Spe-
cial Attack (SpA): partly determines how much damage a
Pokémon deals when using a special move; Special Defense
(SpD): partly determines how much damage a Pokémon
takes when being hit by a special move; Speed (Spe): deter-
mines the order that Pokémon act in battle within a moves
priority group [10].

Abilities: Abilities are passive effects that Pokémon can
have that can affect battles. For example, Quagsire’s ability
”Unaware” makes it ignore an opponent’s stat changes dur-
ing damage and accuracy calculations, both when it takes it
an attack or attacks. Some Pokémon have multiple ability
options to choose from, each with differing effects. These
abilities also may not always be helpful, some abilities can
be hindering to a Pokémon [2].
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Type: Each Pokémon can have up to two types, which
define which type moves it has advantages and weaknesses
against, as well as are immune to. If a Pokémon has two
types the total advantage is determined is by multiplying the
advantage multipliers together for each type. However, if
either type is immune the Pokémon will be immune no mat-
ter how the other type would be affected (ex: a ground move
used against a steel/flying type) [13]. Additionally, if a
Pokémon uses a move that shares a type with the Pokémon,
the move gets a 1.5x damage multiplier [4]. Some abilities
may further increase this multiplier.

Moves: Each Pokémon can learn up to four moves from
a pool of learnable moves for that Pokémon out of the 934
possible Pokémon moves [6]. These moves have three gen-
eral categories, physical moves, special moves, and status
moves. Physical and special moves deal damage based
on the users Attack [8] or Special Attack [9] respectively,
as well as the targets Defense or Special Defense. Status
moves don’t directly cause damage, and includes moves
which do things such as change the weather, inflict status
conditions, raise or lower the stats of a Pokémon, or heal a
Pokémon, etc [12].

Status conditions: Status conditions are a variety of
conditions which affect a Pokémon’s ability to battle. There
are two main types, non-volatile status conditions which last
until healed or removed by other effects, and volatile status
conditions which last while a Pokémon is active during a
battle [11].

Non-volatile affects are a smaller category of conditions
which includes burn, freeze, paralysis, poison and badly
poisoned, and sleep. Burn, poison, and badly poisoned
deal varying damage over time, 1/16th, 1/8th, and 1/16th
increasing per turn respectively. Burn and paralysis both
cause stat drops, burn to Attack and paralysis to speed.
Freeze, sleep, and paralysis can all cause a Pokémon to be
unable to move, with freeze having a 20% chance for the
Pokémon to thaw each turn, sleep lasting one to three turns
before the Pokémon wakes up, and paralysis being a 25%
chance for a Pokémon to be unable to move each turn.

Volatile status conditions are a much broader category
of conditions which includes dozens of conditions, some of
the more common of which will be covered here: Taunt,
Confusion, and Encore. Taunt is a condition which causes a
Pokémon to be unable to use status moves for 3 turns. Con-
fusion is a condition which sometimes causes a Pokémon
to attack itself instead of using the selected move for two
to four turns [3]. Encore is a condition which forces a
Pokémon to use the same move it used prior to being en-
cored for 3 turns [5].

2.2. Pokémon Showdown

Pokémon Showdown is an online Pokémon battle simu-
lator which provides a well featured simulation with a web-

based GUI for human players, as well as web APIs to in-
teract with programmatically. We extend PokéLLMon [15]
and PokéEnv’s [20] battle environment to add our agents.
This battle environment tracks the state of the game re-
ceived from Pokémon Showdown and translates it to text.
Our LLM agent then uses this text and gives an output of
the next action to perform, which is then sent to the server.

Battles are comprised of two players who each start with
six Pokémon. In our case for random battles each player is
given six random Pokémon from a pool each with random
move sets, abilities and items. Both players pick moves si-
multaneously before they are executed in turn based on each
player’s current Pokémon’s speed. Players can also choose
to switch Pokémon, which will be executed before the op-
ponent’s move. Any information about the opponent’s team
and moves is hidden until that Pokémon or move is used
by the opponent. The goal of the battle is to reduce all of
your opponent’s Pokémon to 0 hit points. A Pokémon with
0 hit points can no longer be used, and once all of a player’s
Pokémon reach 0 hit points that player loses.

2.3. Large Language Models

Large Language Models (LLMs) encompass mainly
Transformer [22] based architectures that perform language
modelling. It has been shown by [19] that these models
perform strong zero-shot generalization on a multitude of
language based tasks. They show that this generalization
capability increases with the size of the model. Addition-
ally, [1] shows that the performance of these models can be
greatly improved by fine-tuning on the target domain. In
this work we attempt to leverage both of these facts by col-
lecting zero-shot data with a 7-billion parameter version of
Llama2 [21] and using it to fine-tune Tiny-Llama [24], a
1.1-billion parameter model.

2.4. PokéLLMon [15]

The previous work we build off of is PokéLLMon [15].
In this work they introduce the first LLM capable of play-
ing Pokémon battles at human near human parity. They
achieve this by adopting three techniques to improve pre-
trained LLM performance. First, they employ In-Context
Reinforcement Learning, where the agent is given feed back
about its previous moves when selecting a next move. Sec-
ond, to deal with LLM hallucination they use Retrieval-
Augmented Generation [17] to give the agent information
about Pokémon including types, stats and move effective-
ness. This allows the agent to make informed decisions
without needing to have perfect prior knowledge of the
game dynamics. Finally, they use Self-consistency [23]
which generates multiple candidate outputs by sampling
predicted tokens, and chooses the output generated the most
times. We continue to use all three of these methods on our
trained models.
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Figure 1. PokéLLMon framework that allows an LLM agent to interact with a human. Each turn the information is sent to our system,
which updates the turn history and status of each player Pokémon. The game state is then given to the agent which selects an action. This
action is then sent back to Pokémon Showdown.

3. Methods: PokéLLMon Trainer

We employ a framework akin to that described in
PokéLLMon [15], engaging our agents in 8th Generation
Random Battles on the Pokémon Showdown ladder. Agents
are provided with both the turn history and the current
state of the game to inform future decision-making. We
adopt similar methodologies for In-Context Reinforcement
Learning, Retrieval-Augmented Generation [17], and Self-
Consistency [23] with k=3. Notably, untrained agents are
introduced to Pokémon battles through an informational
prompt—an advantage not extended to their trained coun-
terparts.

This high-level framework facilitates the collection of
prompts and responses from large-model engagements
against human opponents on the Pokémon Showdown lad-
der. The accumulated data serves as a foundation for fine-
tuning a smaller model, thereby distilling knowledge con-
cerning the output format and the typical progression of
Pokémon battles. Our method allows the agent to learn the
dynamics of Pokémon battles, and increase its rate of gen-
erating valid moves.

3.1. Data Collection

To collect data we select a 7-billion parameter variant of
Llama2 [21] as the teacher. By LLM standards this model
is quite small, however it is the largest model we can rea-
sonably run with our hardware restrictions. Despite its size,
this model consistently generates valid moves, and achieves

a slightly higher win rate than the baseline random agent.
We collect prompts from 1,091 ladder games, which in to-
tal provides 23,323 prompts for use in training and testing.
Each turn the model is given a prompt and produces an out-
put, both of which are saved for training and testing. If the
teacher agent chooses an invalid move the prompt and out-
put are not saved, and the agent chooses the highest damag-
ing move available.

3.2. Model Distillation

We propose a method of distilling a larger model’s abil-
ity into a small model. A 1.1-billion parameter language
model, TinyLLama [24], is used as the student. This model
has the same architecture and tokenizer as our teacher
model allowing us to isolate size as a variable.

We create training examples from the data recorded by
the teacher model. First, the introduction prompt about
Pokémon battles is removed to improve model efficiency.
Removing this reduces each prompt by nearly 200 tokens,
about 10% of the entire prompt. We posit that this prompt
is unnecessary after fine-tuning due to the model seeing
historical turns and their outcomes. Once the introduction
prompt is removed, the remaining prompt is combined with
the teacher’s output and an end of sequence token is added
to create a training example.

The student model is then trained in a causal language
modelling mode where the model is given the prompt and
sequentially predicts each next token. The model’s param-
eters are then trained by using Cross-Entropy Loss on each
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Agent Perplexity Valid %
Distilled (Ours) 1.0377 80.7%
Tiny-Llama [24] 4.6229 8.87%

Table 1. Validation Results on the test set of recorded turns taken
by the teacher model. The distilled model significantly outper-
forms the base model on both perplexity and valid moves.

predicted token. The optimizer used is 8-bit Adam [14] with
weight decay. An initial learning rate of 2e-5 is used with
a linear annealing, and a weight decay of 0.01. The model
is trained for a maximum of five epochs, which takes a run
time of approximately ten hours.

Through this process, we aim to imbue the TinyLLama
[24] model with the practical knowledge and decision-
making prowess of its larger counterpart, thereby enhanc-
ing its move selection accuracy and overall performance in
Pokémon battles.

4. Experiments and Results
To test our method we perform multiple experiments in-

cluding validation on a holdout set comprised of 15% of the
data collected from the teacher, and ladder results for each
model. For validation we record perplexity [16] and move
validity of Tiny-Llama [24] before and after fine-tuning.
Additionally we test the teacher, student (both trained an
untrained), and an agent that selects random moves created
in [20]. We show that fine-tuning small LLMs on a larger
models output can significantly increase the number of valid
moves output by the model, and instill an understanding in
Pokémon that allows the small model to surpass the perfor-
mance of the large model.

4.1. Validation Performance

Our first comparison is to measure statistics about the
models performance on a holdout set of data collected from
Llama2’s [21] ladder games and the models own ladder
games. We measure the perplexity [16] of the model’s out-
puts on the holdout set, a common metric for natural lan-
guage tasks. We also measure the percentage of valid out-
puts by the model while playing its own ladder games. A
valid move is one that does not necessarily match the output
label, but is an output that is 1) in the json format and 2) a
move that the current agent’s Pokémon knows or a Pokémon
the agent can switch too.

We find that prior to fine-tuning the model is almost
completely unable to predict the move chosen or even pro-
duce a valid move, with it failing to output valid moves
over 90% of the time and has high perplexity. After fine-
tuning for five epochs we see a significant increase in per-
formance for both of these metrics. Perplexity decreases
from 4.6229 down to 1.0377, and the percentage of valid
moves increases over nine times from 8.87% to 80.7%. We

Agent Win Rate Adj. Win Score
Llama-7b [21] 13.52% 10.92% -3.61
Distilled (Ours) 17.7% 14.1% -3.27
Tiny-Llama [24] 16.67% 10.11% -3.89
Random [20] 10.10% 10.10% -4.09

Table 2. The results of each model on the ladder against human
players. The adjusted win rate is the win rate after wins where
the opponent disconnects while ahead are removed. Score is cal-
culated by calculating (Opponent Pokémon knocked out - Agent
Pokémon left) at the end of battle. For all metrics a larger number
indicates better performance.

believe that this gap may be caused by the limited amount of
training data collected. Even though we played over 1,000
games to collect data this likely does not give us coverage
of all Pokémon available in random battles, or all moves
available in this generation. Additionally, smaller models
may have trouble selecting the specific information from
the long context of the prompts that surpass 2,000 tokens
in length. These prompts also contain move names and
Pokémon that are controlled by the opponent, which could
overlap in some cases.

4.2. Ladder Performance

Comparative to previous works our models are signifi-
cantly less powerful, however we still find it useful to set
a baseline of performance for battling real humans. We
compare the performance of the teacher model (Llama2-
7b-chat-hf [21]), the student model (Tiny-Llama [24]) be-
fore fine-tuning, our distilled student model, and a random
agent. We compare the agents performance on the Pokémon
Showdown ladder with three metrics: Win Rate, Adjusted
Win Rate, and Score. To calculate win rate we remove any
games won by the agent where the opponent disconnected
before taking any actions. Adjusted Win Rate is calculated
by additionally removing any games won where the oppo-
nent disconnected with more Pokémon unfainted than the
agent. We note that it is not necessarily the case that the
agent would lose such a game. However, we find evidence
in our recorded replays that many of these games the oppo-
nent disconnects with a clear advantage. Finally, we report
the average score of the agent’s games. The score of a game
is calculated by taking the number of Pokémon the agent
has unfainted and subtracting the number of Pokémon the
opponent has unfainted at the end of battle. This can give a
better idea about how close agent is to winning. The more
positive a score is the larger the margin of a win, and the
more negative a score is the larger the margin of loss.

To gather results the teacher model played 1,091 games
on the ladder, which were also used for training. When this
agent chooses an invalid move it takes the most damaging
move it has available. Each other agent was tested on the
ladder for approximately 100 games. To better highlight the
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raw abilities of these agents they select a move at random
when their generated output is invalid.

The Tiny-Llama model [24], prior to fine-tuning,
achieves a notably high raw win rate. Yet, its performance,
when evaluated against adjusted win rates and scores, aligns
more closely with that of a random agent—attributable to
over 90% of its outputs being invalid, necessitating substi-
tution with random actions. Remarkably, the distilled model
surpasses the teacher across all ladder metrics, a testament
to its ability to assimilate and retain knowledge from turn
histories and retrieval-augmented prompts. This contrast
underscores the distilled agent’s advantage: it internalizes
and applies battle strategies across encounters, leveraging
insights inaccessible to the teacher, which operates on a
turn-by-turn basis without cumulative learning.

5. Conclusion

We present the first method to train LLMs to play
Pokémon Battles by using model distillation. We show that
this greatly increases a small models ability to select valid
moves, and even increases its ability against human oppo-
nents to greater than the original model. We see a nine-fold
increase in the percentage of valid moves, and a 4% win
rate increase. We also increase model efficiency with train-
ing by removing the need for an engineered introduction
prompt that is repeated every turn.

There are still many challenges to be overcome in future
work. The agent is still unable to pick valid moves for ev-
ery turn and it is yet to be seen if the performance increase
remains when distilling between much larger models. Here
we the lay the groundwork to show such experiments may
be plausible and leave the potential for further improvement
through similar means with human data.
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